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The present paper is a case study on the question if homoclinic solutions of a
differential equation persist under Euler discretization. The motivation for the
particular example investigated comes from iterations of the complex polynomial
z 2 þ c.

Keywords: homoclinic orbits; Euler discretization; discrete system; non-hyperbolic
stationary point
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1. Introduction

Any quadratic complex polynomial can be written in the form z2 þ c, where z and c are

complex. The study of the iterative behaviour of quadratic complex polynomials has been

initiated by Julia and Fatou in the first two decades of the last century. They were

interested in the iteration of the family z2 þ c and the sets whose points have a bounded

orbit, that is, the Julia sets. In the late 1970s, their work was continued by Mandelbrot and

other authors. Julia sets of quadratic complex polynomials serve as examples for fractals

and demonstrate that simple iteration systems can produce complicated dynamics. This

has given rise to the fractals [2]. For some values of c, many properties concerning the

fixed points, periodic points, cycles and more generally invariant sets have been

established. The one-parameter quadratic complex iteration znþ1 ¼ z2n þ c with n [ N and

c [ C can be rewritten as

Xnþ1 ¼ X2
n 2 Y2

n þ a0;

Ynþ1 ¼ 2XnYn þ b0:

(
ð1Þ

Here c ¼ a0 þ ib0 and zn ¼ Xn þ iYn.

Consider the differential system

_X ¼ X 2 2 Y 2 2 X þ a0;

_Y ¼ 1 2XY 2 Y þ b0
� �

;

8<
: ð2Þ
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where 1 . 0 is a parameter. System (1) is an Euler discretization of (2) when 1 ¼ 1.

Putting x ¼ X 2 1=2 and y ¼ Y , system (2) simplifies to

_x ¼ x2 2 y2 þ a;

_y ¼ 1 2xy þ b
� �

;

8<
: ð3Þ

where a ¼ a0 2 1=4 and b ¼ b0. If b ¼ 0, the x-axis is invariant and system (3) is

symmetric to both axes. Thus, for b ¼ 0, the study of system (3) reduces to the half-plane

y $ 0. For a – 0 and b ¼ 0, system (3) admits two equilibria. Both are centres for a . 0

and b ¼ 0 and, up to the one on the equilibrium-free axis, all trajectories are periodic. For

a ¼ b ¼ 0, the origin is a unique equilibrium point and both eigenvalues of the

linearization at the origin are zero. Apart from those on the x-axis, we will prove that all

trajectories are homoclinic to the origin.

The aim of this paper is to investigate whether homoclinic solutions of system (3)

remain homoclinic under Euler discretization with small stepsize, when the stationary

point is non-hyperbolic. Several authors were interested in similar questions such as

discretization of invariant manifolds, phase portraits near a stationary point, heteroclinic

orbits, saddle-node homoclinic orbits or periodic orbits. In the case of a hyperbolic fixed

point of an autonomous equation, Refs [1,5,8] give an affirmative answer to the above

question. They give an error estimate of order OðhdÞ, for the difference between the

homoclinic solution of the differential equation and that of the associated discrete

equation, where h is the stepsize of the method of discretization and d is its order. They

give also the length lðhÞ of the parameter interval over which the homoclinic orbit persists.

The work [8] provides an alternative to the interpolation approach by Fiedler and Scheurle

[5]. Still in the hyperbolic case, many results concerning the approximation of the

solutions of differential equations by numerical methods are established in Refs [3–6] and

the references therein. Besides, the problems of numerical computation of homoclinic and

heteroclinic orbits and that of approximation of phase portraits are studied in Refs [5,8]

and the references therein. Structural stability results of flows under numerical methods

are established in Ref. [7].

In what follows we consider only case a ¼ b ¼ 0 of system (3) we rewrite as

_x ¼ x2 2 y 2;

_y ¼ 21xy:

(
ð4Þ

In Section 2, we point out that, apart from those on the x-axis, all trajectories of system (4)

are homoclinic to the origin. In Section 3, we prove that, for r . 0 small enough and

m . 0 arbitrary, solutions passing through the set Sm;r ¼ {x; y [ R2jx2 þ y 2 # r 2; y $

mjxj} remain homoclinic in the discrete system obtained by Euler discretization.

2. Homoclinic orbits in system (4)

In this section, we study the existence of homoclinic solutions of system (4). We have the

following proposition.

Proposition 1. For any y0 – 0, the orbit of system (4) through ðx0; y0Þ is homoclinic.
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Proof. When x – 0 and y – 0, system (4) reduces to the Bernoulli equation

2x
dx

dy
¼

1

1

x2

y
2 y

� �
; ð5Þ

whose solutions are given by

x2 2 c1y ð1=1Þ þ y 2

2121
¼ 0; if 1 – 1

2
;

x2 þ 2y2 logjyj2 c2y2 ¼ 0; if 1 ¼ 1
2
;

8<
: ð6Þ

where c1 and c2 are constants in R.

The desired result follows from analysing formula (6). Homoclinicity is counter-

clockwise in the half-plane y . 0. Trajectories tend to the origin from the left as t !1

and escape the origin from the right as t !21 (Figure 1). A

3. Homoclinic orbits in the discrete system associated with (4)

Discretization by Euler method with stepsize h . 0 yields to the iteration system

xnþ1 ¼ xn þ h x2n 2 y2n
� �

;

ynþ1 ¼ yn þ 2h1xnyn:

(
ð7Þ

In this section, we deal with the behaviour of the solutions of system (7). Together with

(4), (7) is also symmetric with respect to the x-axis. Our main result is the following:

Figure 1. Homoclinic orbits of system (4).
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Theorem 1. Given m . 0 arbitrarily, there exists a h0 . 0 and an r . 0 such that for any

h [ ð0; h0� and ðx0; y0Þ [ Sm;r, the trajectories of system (7) through ðx0; y0Þ are

homoclinic to the origin.

Note that the trajectories starting near the x-axis are, in general, not homoclinic to the

origin.

The proof of Theorem 1 is based on a sequence of Lemmas. The first Lemma follows

directly from the inverse function theorem.

Lemma 1. There exists a h0 . 0 and an R . 0 such that for any h [ ð0; h0�, the map

wh : R2 ! R2; x; y
� �

7! x þ h x2 2 y 2
� �

; y þ 2hxy
� �

is a diffeomorphism on the ball BR ¼ {ðx; yÞ [ R2jx2 þ y2 # R2} and whðBRÞ . BR=2.

For simplicity, we assume that 1 ¼ 1 and m ¼ 1. Thus Sm;R ¼ S1;R ¼ B < C where

B ¼ x; y
� �

[ S1;R y $ x $ 0j
� �

; C ¼ x; y
� �

[ S1;R 2y # x # 0j
� �

:

For later use, we set

A ¼ x; y
� �

[ S1;R x $ y $ 0j
� �

; D ¼ x; y
� �

[ S1;R x # 2y # 0j
� �

:

Lemma 2. There exists a h0 . 0 such that for any h [ ð0; h0�, D is invariant under system

(7) and ðx0; y0Þ [ D implies that ðxn; ynÞn[N ! ð0; 0Þ as n !1.

Proof. Pick ðx0; y0Þ [ D arbitrarily and observe that, for h small enough,

0 # y1 ¼ y0 1þ 2hx0ð Þ # y0; x0 # x1 ¼ x0 þ h x20 2 y20
� �

;

y1 þ x1 ¼ y0 þ x0
� �

1þ h x0 2 y0
� �� �

þ 2hx0y0 # 0:

In particular, x1 # 0 and y21 þ x21 # y20 þ x20 # R2. The estimates above show that xn is

increasing and yn is decreasing. Thus, xn ! x* and yn ! y* for some ðx*; y*Þ [ D. Letting

n !1 in (7) leads to x* ¼ y* ¼ 0. A

Lemma 3. There exists h0 . 0, r [ ð0; R
6
� with the property as follows. For any h [ ð0; h0�

and ðx0; y0Þ [ B with y0 # r, there exists a p [ N* such that yp # 5r and ðx0; y0Þ,

ðx1; y1Þ, . . . , ðxp; ypÞ [ B, ðxpþ1; ypþ1Þ [ C.

Proof. We begin by observing that ðx1; y1Þ � B implies that ðx1; y1Þ [ C. In fact, y1 ¼

y0ð1þ 2hx0Þ $ y0 . 0 and, for h and y0 sufficiently small, 2y1 # x1 ¼ x0 þ h

ðx20 2 y20Þ # x0. Now assume that ðxn; ynÞ [ B for all n [ N. We distinguish two cases

according as yn # 2r for all n [ N or not. If yn # 2r for all n [ N, then xn ! 0 because xn

is decreasing. Otherwise, xn is separated from 0 and by ynþ1 ¼ ynð1þ 2hxnÞ . yn the

sequence yn is unbounded. (There is nothing to prove if y0 ¼ 0, i.e. y0 ¼ x0 ¼ 0) But then

0 # xnþ1 ¼ xn þ hðx2n 2 y2nÞ is a contradiction for large n. (This follows via 0 # 2hy20
by letting n !1. (Here again, y0 – 0.)) If yn . 2r for some n, we may assume that
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0 # xn # r and 2r # yn # 3r. Suppose that ðxn; ynÞ, ðxnþ1; ynþ1Þ, . . . , ðxnþk; ynþkÞ [ B for

some k [ N. Then ynþ1 ¼ ynð1þ 2hxnÞ $ yn $ 2r, xnþ1 ¼ xn þ hðx2n 2 y2nÞ # r 2 3hr 2

and by induction, xnþk # r 2 3hkr 2. Hence k # m ¼ ½ 1
3hr
� þ 1 the integer part of 1

3hr
plus

1. It follows that ynþk # ynð1þ 2hrÞm # 3re2=3ð1þ 2hrÞ # 5r. Thus, p can be chosen for

the largest integer k satisfying ðxn; ynÞ, ðxnþ1; ynþ1Þ, . . . ,ðxnþk; ynþkÞ [ B. A

Lemma 4. There exists h0 . 0 such that for any h [ ð0; h0�, ðx0; y0Þ [ C implies that

ðx0; y0Þ, ðx1; y1Þ, . . . ,ðxr; yrÞ [ C, ðxrþ1; yrþ1Þ [ D for some r [ N.

Proof. As long as ðxn; ynÞ [ C, both xn and yn are decreasing and bounded. There is

nothing to prove if y0 ¼ 0. If ðxn; ynÞ [ C for all n, then xn ! x* , 0 and yn ! y* $

2x* . 0 for some ðx*; y*Þ [ C. Thus, y* ¼ y*ð1þ 2hx *Þ and y* ¼ 0, a contradiction.

Thus ðx0; y0Þ, ðx1; y1Þ, . . . ,ðxr; yrÞ [ C but ðxrþ1; yrþ1Þ � C for some r [ N. For h small

enough, ðxrþ1; yrþ1Þ [ D. A

Now, we are in a position to give the proof of the main result.

Proof of Theorem 1. Let ðx0; y0Þ be a point in B0 ¼ {ðx; yÞ [ S1;R=6jy $ x $ 0} and let

ðxn; ynÞn[N be a solution of system (7) starting from ðx0; y0Þ. Using Lemmas 3 and 4, the

solution ðxn; ynÞn[N enters first the set C and then the set D. By Lemma 2, this solution will

never leave D and the sequence ðxn; ynÞn[N converges to the unique stationary point ð0; 0Þ
of system (7). In the same way, it can be proved that set A is invariant under the sequence

ðx2n; y2nÞn[N which is well defined by Lemma 1. By using the same arguments as above,

it appears that this sequence tends to ð0; 0Þ when n tends to þ1.

If ðx0; y0Þ is in C, the proof is similar. A
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